Adams DS et al. (1986). A highly reiterated family of transcribed oligo(A)-terminated, interspersed DNA elements in the genome of Bombyx mori. J. Mol. Biol. 187(4): 465-478. PubMed

Akasaki T et al. (2010). Characterization of a novel SINE superfamily from invertebrates: "Ceph-SINEs" from the genomes of squids and cuttlefish. Gene 454(1-2): 8-19. PubMed

Bao W and Jurka J. (2010) SINE elements from Sorghum bicolor. Repbase Reports, 10(3), 512. Repbase

Bao W and Jurka J. (2010) SINE elements from the thirteen-lined ground squirrel. Repbase Reports, 10(12), 2172. Repbase

Bejerano G et al. (2006). A distal enhancer and an ultraconserved exon are derived from a novel retroposon. Nature 441(7089): 87-90. PubMed

Borodulina OR and Kramerov DA (1999). Wide distribution of short interspersed elements among eukaryotic genomes. FEBS Lett. 457(3): 409-413. PubMed

Borodulina OR and Kramerov DA (2001). Short interspersed elements (SINEs) from insectivores. Two classes of mammalian SINEs distinguished by A-rich tail structure. Mamm. Genome 12(10): 779-786. PubMed

Borodulina OR and Kramerov DA (2005). PCR-based approach to SINE isolation: simple and complex SINEs. Gene 349: 197-205. PubMed

Bradfield JY et al. (1985). An ubiquitous interspersed DNA sequence family in an insect. DNA 4(5): 357-363. PubMed

Carpenter CD et al. (1982). The 3' untranslated regions of two related mRNAs contain an element highly repeated in the sea urchin genome. Nucleic Acids Res. 10(23): 7829-7842. PubMed

Cheng JF et al. (1984). The rabbit C family of short, interspersed repeats. Nucleotide sequence determination and transcriptional analysis. J. Mol. Biol. 176(1): 1-20. PubMed

Churakov G et al. (2010). Rodent evolution: back to the root. Mol. Biol. Evol. 27(6): 1315-1326. PubMed

Churakov G et al. (2005). A novel abundant family of retroposed elements (DAS-SINEs) in the nine-banded armadillo (Dasypus novemcinctus). Mol. Biol. Evol. 22(4): 886-893. PubMed

Daniels GR and Deininger PL (1983). A second major class of Alu family repeated DNA sequences in a primate genome. Nucleic Acids Res. 11(21): 7595-7610. PubMed

Daniels GR and Deininger PL (1991). Characterization of a third major SINE family of repetitive sequences in the galago genome. Nucleic Acids Res. 19(7): 1649-1656. PubMed

Deininger PL et al. (1981). Base sequence studies of 300 nucleotide renatured repeated human DNA clones. J. Mol. Biol. 151(1): 17-33. PubMed

Deragon JM et al. (1994). An analysis of retroposition in plants based on a family of SINEs from Brassica napus. J. Mol. Evol. 39(4): 378-386. PubMed

Deragon JM and Zhang X (2006). Short interspersed elements (SINEs) in plants: origin, classification, and use as phylogenetic markers. Syst. Biol. 55(6): 949-956. PubMed

Endoh H et al. (1990). A highly repetitive and transcribable sequence in the tortoise genome is probably a retroposon. Eur. J. Biochem. 189(1): 25-31. PubMed

Fawcett JA et al. (2006). A SINE family widely distributed in the plant kingdom and its evolutionary history. Plant Mol. Biol. 61(3): 505-514. PubMed

Feschotte C et al. (2001). Birth of a retroposon: the Twin SINE family from the vector mosquito Culex pipiens may have originated from a dimeric tRNA precursor. Mol. Biol. Evol. 18(1): 74-84. PubMed

Gadzalski M and Sakowicz T (2011). Novel SINEs families in Medicago truncatula and Lotus japonicus: bioinformatic analysis. Gene 480(1-2): 21-27. PubMed

Gentles A and Jurka J (2005). Putative rice SINE element. Repbase Reports 5(5), 133. Repbase

Gentles AJ et al. (2007). Evolutionary dynamics of transposable elements in the short-tailed opossum Monodelphis domestica. Genome Res. 17(7): 992-1004. PubMed

Gilbert N and Labuda D (2000). Evolutionary inventions and continuity of CORE-SINEs in mammals. J. Mol. Biol. 298(3): 365-377. PubMed

Gogolevsky KP and Kramerov DA (2006). Short interspersed elements (SINEs) of the Geomyoidea superfamily rodents. Gene 373: 67-74. PubMed

Gogolevsky KP et al. (2008). Bov-B-mobilized SINEs in vertebrate genomes. Gene 407: 75-85. PubMed

Gogolevsky KP et al. (2009). 5S rRNA-derived and tRNA-derived SINEs in fruit bats. Genomics 93(5): 494-500. PubMed

Grechko VV et al. (2011). Short interspersed elements (SINEs) of squamate reptiles (Squam1 and Squam2): structure and phylogenetic significance. J. Exp. Zool. 316B(3): 212-226. PubMed

Holt RA et al. (2002). The genome sequence of the malaria mosquito Anopheles gambiae. Science 298(5591): 129-149. PubMed

Izsvak Z et al. (1996). DANA elements: a family of composite, tRNA-derived short interspersed DNA elements associated with mutational activities in zebrafish (Danio rerio). Proc. Natl. Acad. Sci. USA 93: 1077-1081. PubMed

Jiang N and Wessler RS (2002) CASINE: a putative SINE element from Oryza sativa. Repbase Reports 2(7), 6. Repbase

Jiang N et al. (2002) F524: SINE element from Oryza sativa. Repbase Reports 2(7), 16. Repbase

Juhling F et al. (2009). tRNAdb 2009: compilation of tRNA sequences and tRNA genes. Nucleic Acids Res. 37(Database issue): D159-162. PubMed

Jurka J (1997). Sequence patterns indicate an enzymatic involvement in integration of mammalian retroposons. Proc. Natl. Acad. Sci. USA 94: 1872-1877. PubMed

Jurka J (2006) AFRO_LA: AFRO-like SINE from African savanna elephant - a consensus. Repbase Reports 6(3): 108. Repbase

Jurka J (2007) SINE1_MT: SINE element from medic barrel. Repbase Reports 7(1): 109. Repbase

Jurka J (2008) ERE3 SINE element from horse. Repbase Reports 8(2): 64. Repbase

Jurka J (2008) RTE-related SINE family from horse. Repbase Reports 8(3): 378. Repbase

Jurka J (2008) SINE elements from tree shrew. Repbase Reports 8(11): 1801. Repbase

Jurka J (2009) SINE elements from hyrax. Repbase Reports 9(11): 3014. Repbase

Jurka J (2010) SINE elements from black cottonwood. Repbase Reports 10(2): 238. Repbase

Jurka J (2010) SINE elements from black cottonwood. Repbase Reports 10(2): 239. Repbase

Jurka J (2010) SINE elements from Lake Malawi cichlids. Repbase Reports 10(3): 510. Repbase

Jurka J (2010) SINE elements from tetrapods. Repbase Reports 10(4): 637. Repbase

Jurka J (2010) Non-LTR retrotransposons from the apple genome. Repbase Reports 10(11): 2017. Repbase

Jurka J and Drazkiewicz A (2002) SINE_DR1: a SINE retroelement from zebrafish. Repbase Reports 2(3): 10. Repbase

Jurka J and Drazkiewicz A (2002) SINE_DR2: SINE-like retroelement from Zebrafish. Repbase Reports 2(3): 11. Repbase

Jurka J and Jurka MG (2008) SINE elements from cat. Repbase Reports 8(9): 974. Repbase

Jurka J and Kohany O (2006) UCON3: Conserved interspersed repeat from mammals and birds. Repbase Reports 16(10): 534. Repbase

Jurka J et al. (2005). Repbase Update, a database of eukaryotic repetitive elements. Cytogenet. Genome Res. 110(1-4): 462-467. PubMed

Kajikawa M and Okada N (2002). LINEs mobilize SINEs in the eel through a shared 3' sequence. Cell 111(3): 433-444. PubMed

Kapitonov VV and Jurka J (2003). A Novel Class of SINE Elements Derived from 5S rRNA. Mol. Biol. Evol. 20(5): 694-702. PubMed

Kapitonov VV and Jurka J (2004) SINEX-1_CR, a putative SINE-like non-LTR retrotransposon from the green algae genome. Repbase Reports 4(2): 45. Repbase

Kapitonov VV and Jurka J (2004) SINEX-3_CR, a putative SINE-like non-LTR retrotransposon from the green algae genome. Repbase Reports 4(2): 47. Repbase

Kapitonov VV and Jurka J (2004) SINEX-4_CR, a putative SINE-like non-LTR retrotransposon from the green algae genome. Repbase Reports 4(4): 120. Repbase

Kapitonov VV and Jurka J (2005) SINE2-1_SP, a family of SINE2 retrotransposons in the sea urchin genome. Repbase Reports 5(4): 95. Repbase

Kapitonov VV and Jurka J (2005) SINE2-2_SP, a family of SINE2 retrotransposons in the sea urchin genome. Repbase Reports 5(4): 96. Repbase

Kapitonov VV and Jurka J (2005) SINE2-3_SP, a family of SINE2 retrotransposons in the sea urchin genome. Repbase Reports 5(4): 97. Repbase

Kapitonov VV and Jurka J (2005) SINE2-6_SP, a family of SINE2 retrotransposons in the sea urchin genome. Repbase Reports 5(6): 164. Repbase

Kapitonov VV and Jurka J (2005) SINE2-7_SP, a family of SINE2 retrotransposons in the sea urchin genome. Repbase Reports 5(7): 191. Repbase

Kido Y et al. (1991). Shaping and reshaping of salmonid genomes by amplification of tRNA-derived retroposons during evolution. Proc. Natl. Acad. Sci. USA 88(6): 2326-2330. PubMed

Kido Y et al. (1994). Amplification of distinct subfamilies of short interspersed elements during evolution of the Salmonidae. J. Mol. Biol. 241(5): 633-644. PubMed

Kojima K and Jurka J (2010) SINE elements from Lake Malawi cichlids. Repbase Reports 10(3): 510. Repbase

Kojima K and Jurka J (2010) SINE elements from stickleback. Repbase Reports 10(3): 516. Repbase

Kojima K and Jurka J (2010) Putative SINEs from the apple genome. Repbase Reports 10(10): 1822. Repbase

Kojima K and Jurka J (2011) Non-LTR retrotransposons from the southern house mosquito. Repbase Reports 11(1): 595. Repbase

Kojima K and Jurka J (2011) Non-LTR retrotransposons from the southern house mosquito. Repbase Reports 11(1): 596. Repbase

Kojima K and Jurka J (2011) Non-LTR retrotransposons from the southern house mosquito. Repbase Reports 11(1): 597. Repbase

Kojima K and Jurka J (2011) Non-LTR retrotransposons from the southern house mosquito. Repbase Reports 11(1): 598. Repbase

Kojima K and Jurka J (2011) SINEs from the southern house mosquito. Repbase Reports 11(1): 623. Repbase

Kojima K and Jurka J (2011) SINEs from the southern house mosquito. Repbase Reports 11(1): 624. Repbase

Kosushkin SA et al. (2006). A new family of interspersed repeats from squamate reptiles. Mol. Biol. (Mosk) 40(2): 378-382. PubMed

Kosushkin SA and Vassetzky NS (2020). Extreme diversity of SINE families in amphioxus Branchiostoma belcheri. Biopolym. Cell (in press).

Kramerov DA and Vassetzky NS (2001). Structure and origin of a novel dimeric retroposon B1-dID. J. Mol. Evol. 52(2): 137-143. PubMed

Krane DE et al. (1991). Subfamily relationships and clustering of rabbit C repeats. Mol. Biol. Evol. 8(1): 1-30. PubMed

Krayev AS et al. (1980). The nucleotide sequence of the ubiquitous repetitive DNA sequence B1 complementary to the most abundant class of mouse fold-back RNA. Nucleic Acids Res. 8(6): 1201-1215. PubMed

Krayev AS et al. (1982). Ubiquitous transposon-like repeats B1 and B2 of the mouse genome: B2 sequencing. Nucleic Acids Res. 10(23): 7461-7475. PubMed

Labuda D et al. (1991). Evolution of mouse B1 repeats: 7SL RNA folding pattern conserved. J. Mol. Evol. 32(5): 405-414. PubMed

Lavrent'eva MV et al. (1989). B2-like repetitive sequence in the genome of the American mink. Dokl. Akad. Nauk SSSR 307(1): 226-228. PubMed

Lee IY et al. (1998). Complete genomic sequence and analysis of the prion protein gene region from three mammalian species. Genome Res. 8(10): 1022-1037. PubMed

Lenoir A et al. (2001). The evolutionary origin and genomic organization of SINEs in Arabidopsis thaliana. Mol. Biol. Evol. 18(12): 2315-2322. PubMed

Lenstra JA et al. (1993). Short interspersed nuclear element (SINE) sequences of the Bovidae. Anim Genet 24(1): 33-39. PubMed

Lin Z et al. (2001). Characterization of a SINE species from vicuna and its distribution in animal species including the family Camelidae. Mamm. Genome 12(4): 305-308. PubMed

Luchetti A and Mantovani B (2009). Talua SINE biology in the genome of the Reticulitermes subterranean termites (Isoptera, Rhinotermitidae). J. Mol. Evol. 69(6): 589-600. PubMed

Luchetti A and Mantovani B (2011). Molecular characterization, genomic distribution and evolutionary dynamics of Short INterspersed Elements in the termite genome. Mol. Genet. Genomics 285(2): 175-184. PubMed

Luchetti A and Mantovani B (2013). Conserved domains and SINE diversity during animal evolution. Genomics doi:10.1016/j.ygeno.2013.08.005 PubMed

Matveev V et al. (2007). Novel SINE families from salmons validate Parahucho (Salmonidae) as a distinct genus and give evidence that SINEs can incorporate LINE-related 3'-tails of other SINEs. Mol. Biol. Evol. 24(8): 1656-1666. PubMed

Matveev V and Okada N (2009). Retroposons of salmonoid fishes (Actinopterygii: Salmonoidei) and their evolution. Gene. PubMed

Milner RJ et al. (1984). Brain-specific genes have identifier sequences in their introns. Proc. Natl. Acad. Sci. USA 81(3): 713-717. PubMed

Mochizuki K et al. (1992). Characterization of a plant SINE, p-SINE1, in rice genomes. Jpn. J. Genet. 67(2): 155-166. PubMed

Motohashi R et al. (1997). Structures and distribution of p-SINE1 members in rice genomes. Theor. Appl. Genet. 95: 359-368. PubMed

Munemasa M et al. (2008). Newly discovered young CORE-SINEs in marsupial genomes. Gene 407(1-2): 176-185. PubMed

Myouga F et al. (2001). Identification and structural analysis of SINE elements in the Arabidopsis thaliana genome. Genes Genet. Syst. 76(3): 169-179. PubMed

Nikaido M et al. (2001). Evolution of CHR-2 SINEs in cetartiodactyl genomes: possible evidence for the monophyletic origin of toothed whales. Mamm. Genome 12(12): 909-915. PubMed

Nikaido M et al. (2003). Ancient SINEs from African Endemic Mammals. Mol. Biol. Evol. 20(4): 522-527. PubMed

Nishihara H et al. (2002). Characterization of Novel Alu- and tRNA-Related SINEs from the Tree Shrew and Evolutionary Implications of Their Origins. Mol. Biol. Evol. 19(11): 1964-1972. PubMed

Nishihara H et al. (2006). Functional noncoding sequences derived from SINEs in the mammalian genome. Genome Res. 16(7): 864-874. PubMed

Nishihara H et al. (2007). MyrSINEs: a novel SINE family in the anteater genomes. Gene 400(1-2): 98-103. PubMed

Nishihara H et al. (2016). MetaSINEs: Broad Distribution of a Novel SINE Superfamily in Animals. Genome Biol. Evol. 8(3): 528-539. PubMed

Nisson PE et al. (1988). Identification of a repeated sequence in the genome of the sea urchin which is transcribed by RNA polymerase III and contains the features of a retroposon. Nucleic Acids Res. 16(4): 1431-1452. PubMed

Ogiwara I et al. (1999). Retropositional parasitism of SINEs on LINEs: identification of SINEs and LINEs in elasmobranchs. Mol. Biol. Evol. 16(9): 1238-1250. PubMed

Ogiwara I et al. (2002). V-SINEs: a new superfamily of vertebrate SINEs that are widespread in vertebrate genomes and retain a strongly conserved segment within each repetitive unit. Genome Res. 12(2): 316-324. PubMed

Ohshima K et al. (1993). Several short interspersed repetitive elements (SINEs) in distant species may have originated from a common ancestral retrovirus: characterization of a squid SINE and a possible mechanism for generation of tRNA-derived retroposons. Proc. Natl. Acad. Sci. USA 90(13): 6260-6264. PubMed

Ohshima K and Okada N (1994). Generality of the tRNA origin of short interspersed repetitive elements (SINEs). Characterization of three different tRNA-derived retroposons in the octopus. J. Mol. Biol. 243(1): 25-37. PubMed

Piskurek O et al. (2003). Unique mammalian tRNA-derived repetitive elements in dermopterans: the t-SINE family and its retrotransposition through multiple sources. Mol. Biol. Evol. 20(10): 1659-1668. PubMed

Piskurek O et al. (2006). Sauria SINEs: Novel short interspersed retroposable elements that are widespread in reptile genomes. J. Mol. Evol. 62(5): 630-644. PubMed

Piskurek O et al. (2009). The evolution of two partner LINE/SINE families and a full-length chromodomain-containing Ty3/Gypsy LTR element in the first reptilian genome of Anolis carolinensis. Gene 441(1-2): 111-118. PubMed

Piskurek O and Jackson DJ (2011). Tracking the ancestry of a deeply conserved eumetazoan SINE domain. Mol. Biol. Evol. 28(10): 2727-2730. PubMed

Roos C et al. (2004). Primate jumping genes elucidate strepsirrhine phylogeny. Proc Natl Acad Sci U S A 101(29): 10650-10654. PubMed

Sakagami M et al. (1994). A novel tRNA species as an origin of short interspersed repetitive elements (SINEs). Equine SINEs may have originated from tRNA(Ser). J. Mol. Biol. 239(5): 731-735. PubMed

Sasaki T et al. (2004). First application of the SINE (short interspersed repetitive element) method to infer phylogenetic relationships in reptiles: an example from the turtle superfamily Testudinoidea. Mol. Biol. Evol. 21(4): 705-715. PubMed

Schmitz J and Zischler H (2003). A novel family of tRNA-derived SINEs in the colugo and two new retrotransposable markers separating dermopterans from primates. Mol. Phylogenet. Evol. 28(2): 341-349. PubMed

Serdobova IM and Kramerov DA (1998). Short retroposons of the B2 superfamily: evolution and application for the study of rodent phylogeny. J. Mol. Evol. 46(2): 202-214. PubMed

Shimamura M et al. (1999). Genealogy of families of SINEs in cetaceans and artiodactyls: the presence of a huge superfamily of tRNA(Glu)-derived families of SINEs. Mol. Biol. Evol. 16(8): 1046-1060. PubMed

Simmen MW and Bird A (2000). Sequence analysis of transposable elements in the sea squirt, Ciona intestinalis. Mol. Biol. Evol. 17(11): 1685-1694. PubMed

Singer DS et al. (1987). Identification and DNA sequence of an interspersed repetitive DNA element in the genome of the miniature swine. Nucleic Acids Res. 15(6): 2780. PubMed

Smit AF and Riggs AD (1995). MIRs are classic, tRNA-derived SINEs that amplified before the mammalian radiation. Nucleic Acids Res. 23(1): 98-102. PubMed

Smit AFA (2002). Initial survey of interspersed repeats in Takifugu rubripes. Repbase Reports 2(2): 49. Repbase

Smit AFA (2009). TguSINE1 - tRNA from Estrildidae. Repbase Reports 9(1): 272. Repbase

Spotila LD et al. (1989). A retroposon-like short repetitive DNA element in the genome of the human blood fluke, Schistosoma mansoni. Chromosoma 97(6): 421-428. PubMed

Sunter JD et al. (2008). A novel SINE family occurs frequently in both genomic DNA and transcribed sequences in ixodid ticks of the arthropod sub-phylum Chelicerata. Gene 415(1-2): 13-22. PubMed

Takahashi K et al. (1998). A novel family of short interspersed repetitive elements (SINEs) from cichlids: the patterns of insertion of SINEs at orthologous loci support the proposed monophyly of four major groups of cichlid fishes in Lake Tanganyika. Mol. Biol. Evol. 15(4): 391-407. PubMed

Thompson, K., Jurka, J. and Marshall Graves, J. A. (2006) WALLSI4: a non-LTR retrotransposon from Tammar wallaby. Repbase Reports 6(4): 204. Repbase

Tsuchimoto S et al. (2008). New SINE families from rice, OsSN, with poly(A) at the 3' ends. Genes Genet. Syst. 83(3): 227-236. PubMed

Tu Z (1999). Genomic and evolutionary analysis of Feilai, a diverse family of highly reiterated SINEs in the yellow fever mosquito, Aedes aegypti. Mol. Biol. Evol. 16(6): 760-772. PubMed

Tu Z et al. (2004). The changing tails of a novel short interspersed element in Aedes aegypti: genomic evidence for slippage retrotransposition and the relationship between 3' tandem repeats and the poly(dA) tail. Genetics 168(4): 2037-2047. PubMed

Vassetzky NS and Kramerov DA (2002). CAN--a pan-carnivore SINE family. Mamm. Genome 13(1): 50-57. PubMed

Vassetzky NS and Kramerov DA (2013). SINEBase: a database and tool for SINE analysis. Nucleic Acids Res. 41(D1): D83-D89. PubMed

Veniaminova NA et al. (2007). B1 SINEs in different rodent families. Genomics 89(6): 678-686. PubMed

Warren WC et al. (2008). Genome analysis of the platypus reveals unique signatures of evolution. Nature 453(7192): 175-183. PubMed

Wang J et al. (2012). Characterization of three novel SINE families with unusual features in Helicoverpa armigera. PLoS One 7(2): e31355. PubMed

Wei W et al. (2001). Human L1 retrotransposition: cis preference versus trans complementation. Mol. Cell Biol. 21(4): 1429-1439. PubMed

Wenke T et al. (2011). Targeted identification of short interspersed nuclear element families shows their widespread existence and extreme heterogeneity in plant genomes. Plant Cell 23(9): 3117-3128. PubMed

Xu J et al. (2010). BmSE, a SINE family with 3' ends of (ATTT) repeats in domesticated silkworm (Bombyx mori). J Genet Genomics 37(2): 125-135. PubMed

Yasui Y et al. (2001). The Au family, a novel short interspersed element (SINE) from Aegilops umbellulata. Theor. Appl. Genet. 102: 463-470. PubMed

Yoshioka Y et al. (1993). Molecular characterization of a short interspersed repetitive element from tobacco that exhibits sequence homology to specific tRNAs. Proc. Natl. Acad. Sci. USA 90(14): 6562-6566. PubMed

Zhao F et al. (2009). Tracking the past: interspersed repeats in an extinct Afrotherian mammal, Mammuthus primigenius. Genome Res. 19(8): 1384-1392. PubMed